gganimate
lmer
=
<-
.
_
pubtheme
tidyverse
DT
tidycensus
ggplot
plot.lm
methods
getAnywhere
browser()
debug
debugonce
foreach
rbind
dplyr
filter
select
str
mutate
arrange
summarise
reframe
bind_rows
group_by
ifelse
pivot_wider
pivot_longer
left_join
geom_point
ggsave
geom_smooth
group
facet_wrap
alpha
geom_jitter
geom_hex
geom_col
fill
position_dodge
geom_text
geom_histogram
geom_line
geom_tile
theme
ggplotly
Simulate \(y\) data for Poisson regression with one continuous predictor \(x_1\), \[y \sim Poisson(\lambda), \\ \lambda = e^{\beta_0 + \beta_1x},\]
and then plot.
dg$y = rpois(n = n, lambda = exp(0+ 2*x1)) g = ggplot(dg, aes(x1, y)) + geom_jitter(width = 0, height = 0.2, alpha = 0.3) g %>% pub(xlim = c(0,1))
[1] 37.35768 [1] 80 [1] 20 [1] 137.3577