gganimate
lmer
=
<-
.
_
pubtheme
tidyverse
DT
tidycensus
ggplot
plot.lm
methods
getAnywhere
browser()
debug
debugonce
foreach
rbind
dplyr
filter
select
str
mutate
arrange
summarise
reframe
bind_rows
group_by
ifelse
pivot_wider
pivot_longer
left_join
geom_point
ggsave
geom_smooth
group
facet_wrap
alpha
geom_jitter
geom_hex
geom_col
fill
position_dodge
geom_text
geom_histogram
geom_line
geom_tile
theme
ggplotly
First, create simulated continuous predictor \(x_1\) and binary predictor \(x_2\).
set.seed(1) n = 10000 ## Create x data x1 = runif(n, min = 0, max = 1) x2 = rdunif(n, b = 0, a = 1) ## Put them in a data frame dg = data.frame(x1, x2)